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Dual electromagnetism (proposed some time ago) allows the fractional electric 
charges and the magnetic monopoles to exist simultaneously. In fact, the Dirac 
quantization condition can be numerically reduced (with some plausible assump- 
tions) to the third component of the particle total weak isospin, which by 
definition is always quantized. The field angular momentum, L, of a static 
particle-magnetic monopole configuration is evaluated exactly; it is found that 
because the dual photon has a mass, Me, L generally depends on r, the separation 
between a particle and a monopole. However, since M c = 130 GeV, at r >  M~ -1, 
L is basically dominated by ordinary electromagnetism and as such very weakly 
dependent on r. 

Recently Barr et al. (1983) have introduced a "peculiar" photon into 
a grand unified model in order to reconcile the possible observations of 
fractional electric charges by La Rue et al. (1981) and of a magnetic 
monopole by Cabrera (1982). It may be pointed out that the idea of another 
photon is not all that new. Many people speculated about its existence at 
one time or another; some years ago this author introduced the dual photon 
within the framework of dual electromagnetic interactions (Soln, 1979, 1980, 
1981a, b). In this paper we wish to show how dual electromagnetism 
naturally allows the fractional electric charges and magnetic monopoles to 
exist simultaneously. Namely, the observed fractional charges (La Rue et 
at., 1981) appear in multiples of q = e/3,  while the apparently observed 
magnetic monopole has the magnetic charge of g = ( 2 e )  -1. This is clearly 
in contradiction with the original Dirac quantization condition (Dirac, 1931) 
gq  = n / 2 ,  n = 0, +1, + 2 , . . . .  Hence, this condition has to be modified. 

Let us start our discussion with the fact that flavor quantum numbers 
of basic fermions (leptons and quarks) as well as of other particles can be 
associated with the SU(2) x U(1) type of algebras (Soln, 1979, 1981a). From 
this formalism we also deduced that to each flavor quantum number there 
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corresponds a dual quantum number. Hence, in addition to the ordinary 
electric charge, there is the dual electric charge. This fact we took as an 
indication of the existence of dual electromagnetic interactions in nature. 
Subsequently we performed the unification of weak, electromagnetic, and 
dual electromagnetic interactions (Loin, 1979, 1980). The Yang-Mills group 
which contains the electromagnetic, dual electromagnetic, and weak currents 
is clearly SUL(2) • U(1) • U'(1) (Soln, 1980). A simple consistency require- 
ment (Loin, 1979, 1980) as well as the idea of the universality of the 
electromagnetic coupling constant in neutral currentlike interactions (Loin, 
1981 b), suggests that dual electromagnetism and ordinary electromagnetism 
have the same strengths. This led the theory to a rather good agreement 
with experiments (Loin, 1979, 1980). Within dual electromagnetism we have, 
of course, the dual photon. Its mass, Me, unlike the mass of the ordinary 
photon, is not zero but about 130 GeV acquired through the spontaneous 
symmetry-breaking mechanism (Loin, 1980). 

In general, with respect to U(1) and U'(1), every particle carries electric 
charge q = Qe and dual electric charge q '=  Q'e', respectively. Here e and 
e' are "elementary" electric and dual electric charges, respectively. [As 
already mentioned, numerically e '= e (Loin, 1980, 1981b).] Q and Q' are 
integral or fractional numbers satisfying 

Q=I3+�89 (la) 

Q'= I3-�89 (lb) 

where I3 is the third component of the particle's total weak osospin, B its 
baryon number, and L its lepton number. The value of 13 for a given particle 
one concludes from the SU(2) representation assignments (Soln, 1980, 
1981 a). For the basic fermions, 13 can be read off from their two-dimensional 
assignments as follows: 

(eVe), ( ;~_ ) , . . .  (2a) 

(u) (:) d ' ' " ' "  (2b) 

One sees (Soln, 1981a) that 

Q(e-) = - l ,  Q(ve) = O, 

Q(d) = -1/3 ,  

etc. 

Q'(e-) =0, Q'(ve) = 1, Q(u) =2/3 

Q'(u) = 1/3, Q'(d) = -2 /3  

Let now a pointlike magnetic monopole have two kinds of magnetic 
charges also: g (magnetic charge) under U(1) and g' (dual magnetic charge) 
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under U'(1). Such a pointlike monopole, which for simplicity is situated 
at the origin of coordinates, has magnetic and dual magnetic fields with 
the corresponding vector potentials (Coleman 1981/1982; Wu and Yang, 
1976), as follows (k = g, g'): 

Bk = k ~  (3a) 

~ k ( l - c o s  0) 
A(-),k -- r sin 0 (3b) 

~k(1 +cos 0) 
A(+).k = r sin 0 (3c) 

Potentials A(-),k(A(+),k) correspond to a monopole which has the Dirac 
string, at which the potentials are singular, extending to infinity along the 
negative (positive) z axis. According to Wu and Yang (Coleman, 1981/1982; 
Wu and Yang, 1976), for the singularity-free description of the monopole 
fields we should simultaneously utilize A(_) and A(+) vector potentials. 

Now if we restrict ourselves to just one kind of vector potentials, say, 
A(_), then a particle carrying charges of q = Qe and q' = Q'e' cannot detect 

the string via the Bohm-Aharanov effect (Coleman, 1982; Wu and Yang, 
1976) if 

1 
M=---~(Qe~g+Q'e'Cbg,)=n/2, n =0,  +1, : t :2, . . . ,  

(4) 
( I ) g  = 47rg, qbg, = 4~rg' 

where qbg and ~g, are magnetic and dual magnetic fluxes through an 
infinitesimal circle encircling the string at any point on the negative z axis 
(Goldhaber, 1965). Relation (4) is now the modified Dirac quantization 
condition. 

On the other hand, we may choose the singularity-free description of 
the monopole fields. Now, however, since A(_)'s and A(+)'s are connected 
through gauge transformations 

A(+),k = A(-),k - V , ) ( k ,  ,)(k = 2k~b, k = g, g' 

the corresponding wave functions (SchrSdinger, Dirac, etc.) O(-) and ~b(+), 
of  a particle with charges Qe and Q'e', also are related through the gauge 
transformation: 

0(§ = e-i:M* 0(-) (5) 

The requirement that ~(+) be single valued, assuming that (h(-) already is, 
again yields quantization condition (4). 
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With the help of equations (la, b) we have 

M = eQg+ e'Q'g' (6a) 

M = (eg+ e 'g ' ) I3+(eg -  e'g')�89 - L )  (6b) 

Here one notices that M is symmetric if the roles of ordinary and dual 
electromagnetisms are interchanged: e<--> e', Q<--> Q', g<-->g' (B<-> -B ,  L<--> 
- L ,  13<--> 13). As mentioned, comparison of the SUL(2) x U(1) • U'(1) gauge 
theory of weak, electromagnetic, and dual electromagnetic interactions with 
experiments suggests e' = e (Soln, 1979, 1980, 1981a, b). Furthermore, taking 
g = 1/2e as suggested by Cabrera's experiment, we have from (6b) 

M=�89  1+ I3+�89 1 -  � 8 9  (7) 

This relation poses rather stringent conditions on g and g'. For example, 
g ' = - g  is clearly not permitted, for it would not be possible to satisfy 
quantization condition (4) with B = 1/3. Also, we would have M =0  for 
any meson, which would be rather unappealing from the physical point of 
view. Now we wish to argue that the choice of g ' = g  is a natural one. 
Namely, if we take the invariance of M under the interchange of electromag- 
netism and dual electromagnetism seriously, then we have from (7) that 
2 = g /g '+  g ' /g  and g' /g  = g/g' .  These two equations are satisfied with g' --- g 
only. In fact, if in eg = 1/2 transformations e <--> e' and g <--> g' are performed 
and e '=  e is taken into account, then g ' =  g again follows. 

In any case for a pointlike magnetic monopole whose dual and ordinary 
magnetic charges are equal, g'--g,  we have 

M = 13 (8) 

which not only satisfies quantization condition (4), but also specifies what 
n on the right side of (4) should be for every particle. As we see, the Dirac 
quantization condition appears to be associated with the third component 
of the particle total weak isospin. In fact, for a quantized theory (the 
quantized quantities appear with caps), the right side of equation (5) can 
be generated through 

ei2'~e~ @_) e -i2~3~" = e-i213~t~(_) (9) 

i.e., as a unitary "'rotation" about the third axis of isospin. Here this axis 
can be formally associated with the geometric axis of the monopole string, 
since ~b is an actual geometric angle. This axis also formally supplies the 
direction in the isotopic spin space along which isotopic spin I is diagonal. 
As we see, the magnetic monopole assigns geometric attributes to the isotopic 
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spin space. However, relation (9) is not an isospin rotation because the 
generator is 213 rather than just i3. 

Let us now turn to the angular momentum, L, contained in the fields 
of a pointlike particle (with charges Qe and Q'e') in the presence of a point 
magnetic monopole (with magnetic charges g and g'). The expression for 
L clearly is (compare with Jackson, 1975) 

1 f d3xx•  XBg,] L=4- ~ 

Q e ( x - r )  
m o - ix_r[3 , E o , = - V ( x ) V o , ( x - r )  (10) 

kx 
Bk = ~ ~ ,  k = g, g' 

where the magnetic monopole, as before, is at the origin of the coordinates, 
and vector r denotes the position of the point particle. V o, is the static 
potential of the particle due to dual electric charge Q'e'. From Soln (1980) 
we easily deduce that the static potential has the Yukawa form: 

e-Mclx-rl 
V o , = Q ' e ' - -  (11) 

Ix-r[ 
where Mc = 130 GeV (Loin, 1980). The range of this potential is clearly very 
short, about mfm. The evaluation of L, although tedious, can be done 
exactly. Here we just give the result: 

L = - ~ L ,  L=Lg+Lg, 

L~ = Qeg 
( 1 2 )  

L,, = 2Q' e' g'{a -2-  e-~[a-2+ a-l]} 

a --- rMc, r = Irl 

One verifies that Lg,~ Q'e'g' when a + 0  (r-~0, Mc fixed; Me+0,  r fixed). 
As we see, unlike Lg, Lg, depends on r. Hence, in general L and M are 
different [compare with equation (6a)]. Thus Dirac quantization condition 
(4) no longe~ implies that field angular momentum L is half-integer quant- 
ized (Saha, 1936, 1949; Wilson, 1949). The exception is at r = 0 ,  when 
L(r = O) = M. However, this is only of academic interest since at r ~< M~ -1 -- 
mfm even leptons cease being pointlike. 

For r >  M~ -~, L is dominated by Lg. This simply is the reflection of  the 
fact that the dual electromagnetic interactions are only of about the mfm 
range. This also means that particles which carry both ordinary and dual 
electric charges (such as quarks, charged pions ~-• etc.) at distances larger 
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than mfm basically will experience only the usual Cou lomb ' s  law. To 
summarize,  while at distances larger than mfm, dual  electromagnetism has 
no, or very little, effect on  quantities such as forces, angular  momenta ,  and 
the like, it nevertheless provides the correct  Dirac quant izat ion condi t ion 
for  the pa r t i c l e -monopo le  system, independent  o f  their mutual  distance. 

Let us just  ment ion  that  our  analysis o f  the magnet ic  m o n o p o l e  did 
not  require a color  magnet ic  charge ( t 'Hooft ,  1976; Preskill, to be published).  
( I f  it has a color  magnet ic  charge, then it would  also have to have a dual  
color  magnet ic  charge whose fields would  have to be screened at distances 
greater than  fm.)  Hence,  the observed fractionally charged particle at 
Stanford could  either be a quark  or an isolated (colorless) particle. 
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